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We develop a spatiotemporal mode decomposition technique to study the spatial and temporal mode power
distribution of ultrashort pulses in long spans of graded-index multimode fiber, for different input laser con-
ditions. We find that the beam mode power content in the dispersive pulse propagation regime can be described
by the Bose–Einstein law, as a result of the process of power diffusion from linear and nonlinear mode coupling
among nondegenerate mode groups. In the soliton regime, the output mode power distribution approaches the
Rayleigh–Jeans law. © 2023 Chinese Laser Press
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1. INTRODUCTION

In recent years, there has been a resurgence of interest in study-
ing nonlinear effects in multimode optical fibers (MMFs), both
for their application and fundamental science perspectives
[1,2]. Among these, the surprising observation of spatial beam
self-cleaning induced by the Kerr effect in graded-index
(GRIN) MMFs has attracted significant attention [3,4].
Analogous, but different in nature from Raman beam clean-
up [5], beam self-cleaning consists of the reshaping, as the input
power is increased, of the multimode speckled transverse inten-
sity profile at the output of the fiber into a bell-shaped beam
close to the fundamental mode of the fiber, sitting on a low-
intensity multimode background [3].

Spatial beam self-cleaning can be exploited to substantially
improve the beam quality at the output of MMFs, a property
which is of interest for high-peak power beam delivery, mode-
locked fiber lasers [6,7], and high-resolution imaging systems
[8,9], to cite a few. To date, several models have been proposed
for describing the physical mechanism of Kerr self-cleaning, in-
cluding nonlinear nonreciprocal mode coupling [3], self-organ-
ized instabilities [10], 2D hydrodynamic turbulence [11], beam
condensation [12,13], and, last but not least, beam thermaliza-
tion [14]. In a thermodynamic framework, the multimode
beam is represented as a gas of indistinguishable particles, that
populates the large, but finite number of spatial modes of the
fiber. This approach is powerful, since it permits the exploita-

tion of the conservation laws (e.g., the number of particles, or
power, the linear momentum, and the orbital angular momen-
tum), which are inherent to virtually lossless beam propagation
in short lengths of fiber. By exploiting the tools of statistical
mechanics, one may then describe beam self-cleaning as the
irreversible evolution of the gas of photons toward its state
of thermal equilibrium. This is identified by the definition
of thermodynamic parameters, such as the temperature (T ) and
the chemical potential (μ) [14]. The validity of this approach
has been recently confirmed by means of mode-decomposition
experiments, revealing the input power dependence of the
mode redistribution at the fiber output, in good qualitative
agreement with theoretical predictions [15–17].

In the thermodynamic approach, the role of nonlinearity is
merely that of inducing, via four-wave mixing, the exchange of
photons among nondegenerate fiber modes, in analogy with
particle collisions in a gas [14]. However, it has been noted that
mode energy exchanges leading to thermal equilibrium are
greatly facilitated by the presence of random linear mode cou-
pling (RMC) [18,19]. The question then arises: is nonlinearity
a necessary ingredient for thermalization in highly MMFs, or
can linear disorder do the job by itself? And in this case, what is
the expected output mode power distribution? In Raman fiber
laser experiments based on kilometer-long spans of GRIN
MMF, it has been observed that the highly multimode pump
beam reaches a steady-state distribution that corresponds to
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mode equipartition [20–22]; whereas in a recent work, the roles
of nonlinear and linear mode coupling have been systematically
studied, by artificially varying the strength of linear disorder in
an MMF [23]. These experiments confirmed that linear and
nonlinear coupling processes may lead to different thermaliza-
tion regimes, which are consistent with either the mode equi-
partition (when linear disorder prevails) or a Rayleigh–Jeans
(RJ) distribution (when nonlinearity dominates). In Ref. [23],
strong linear disorder was introduced by applying a stress to the
MMF via a series of clamps. It remains to be studied what is the
role of the linear disorder which is inherent to standard
telecommunication GRIN fibers, owing to the presence of mi-
crobends that lead to nearest-neighbor coupling of power
among adjacent nondegenerate modes [24], and its interplay
with a weak fiber nonlinearity.

This is the purpose of this work: by applying a novel time-
resolved mode decomposition technique, which permits meas-
uring with unprecedented accuracy the energy fraction of
higher-order modes, we could determine the evolution of
the mode power distribution in long lengths (up to 5 km) L
of GRIN MMF. We explored four propagation regimes:
(i) a weakly nonlinear dispersive pulse regime, where the effec-
tive interaction length Le was of the same order as the nonlinear
length, as in the early self-cleaning experiments [3], but with
Le ≪ L; (ii) a pseudo-linear pulsed regime [25], where strong
dispersion-induced pulse broadening rapidly imposes linear
propagation; (iii) a purely linear continuous-wave (CW) re-
gime; and (iv) a nonlinear solitonic propagation regime.

In the former three cases, linear random mode coupling pre-
vails over weakly nonlinear mode mixing in determining the
steady-state mode power distribution, which is a realistic case
in most applications. Surprisingly, our observations reveal that,
even in these regimes, no mode equipartition was observed in
GRIN fibers. To the contrary, the long-distance mode distri-
bution converges toward a thermalized state, that is quantita-
tively well described by an exponential decay versus mode
energy, as described by a Bose–Einstein (BE) distribution.
Note that a similar exponential mode power distribution
was recently observed for the Stokes beam in a Raman fiber
laser; however, in that case mode-dependent gain has a signifi-
cant influence in determining the equilibrium mode distribu-
tion [22]. In the soliton case, beam condensation in the
fundamental fiber mode and pulse narrowing were observed.
Here the mode power distribution approaches the Rayleigh-
Jeans law, albeit with a slightly larger depletion of higher-order
modes. Our experiments revealed the occurrence of a sudden
change of the output modal distribution, from the BE to a
quasi-RJ law, when a temporal soliton is forming. This finding
provides, we believe for the first time, an experimental evidence
of a distribution transition, which occurs in long spans of mul-
timode optical fiber when passing from a linear-disorder domi-
nated and pseudo-linear dispersive propagation regime, to a
soliton regime.

2. THEORY

Modes of GRIN fibers are defined in terms of radial and azi-
muthal numbers (l,m), and can be grouped in terms of their
quantum number q � 2l� jmj � 1, with q � 1, 2,…,Q

because of their equal propagation constant, βq. Besides the
total number of power packets N � P

nq, the total momen-
tum or energy H � P

ϵqnq, where ϵq � βq − βQ , is also con-
served upon beam propagation. Maximization of the entropy,
constrained by the conservation of N and H , leads to the BE
law [14,16]:

jcqj2 �
nq
gq

� 1

exp�−�μ� ϵq�∕T � − 1 , (1)

where gq � q is the number of modes within group q.
Whenever j�μ� ϵq�∕T j ≪ 1, Eq. (1) can be approximated
by the RJ distribution jcqj2 � −T ∕�μ� ϵq�. As we shall
see, for high-order modes (i.e., with small ϵq) the approxima-
tion leading to the RJ law becomes invalid, meaning that the
experimental mode distribution is described by the original BE
law Eq. (1). In the limit of high temperatures, the mode dis-
tribution can be approximated with the Maxwell–Boltzmann
(MB, or exponential) law jcqj2 ≃ exp��μ� ϵq�∕T �, i.e., the
equilibrium distribution of a gas of distinguishable classical par-
ticles. In the experiments described in the next section, mode
group powers nq were estimated from fast photodiode traces.
The average individual mode power fraction was determined
as jcij2 � nq∕q, with i � 1 for q � 1, i � 2, 3 for q � 2,
i � 4, 5, 6 for q � 3, and so on. This is justified by considering
that RMC randomly scrambles the power of degenerate modes;
hence, a statistical equipartition of mode power within each
group can be assumed. Distributions of jcij2 for the individual
modes will be compared with BE, RJ, and MB laws, limiting
the analysis to Q � 10 groups comprising N � 55 modes.

In order to verify the accuracy of a mode decomposition, it is
necessary to perform a reconstruction of the output near-field
intensity pattern. When using 2D modal decomposition meth-
ods such as in Ref. [26], it is challenging to properly reconstruct
the output near field of ultrashort pulses propagating over long
fiber lengths, because of the temporal variation of the mode
envelope phases. Such variations are due to (i) the chromatic
dispersion-induced phase chirp of pulses carried by different
modes; (ii) the mode dispersion-induced group delay among
modes; and (iii) the laser-induced phase noise.

To overcome these difficulties, it is necessary to adopt a 3D
mode field reconstruction method which accounts for all of the
previously listed effects, which enables us to reconstruct both
the near-field transverse intensity pattern and the temporal
power traces, emerging from long spans of GRIN fibers.
Our 3D field reconstruction method uses the experimental out-
put power fractions jcij2, in order to provide a weight to the
numerically propagated output spatiotemporal mode fields. We
simulated the linear propagation, in the absence of fiber non-
linearity and mode coupling, of each individual mode field.
This provides the estimated time-dependent output mode
phase profile, which accounts for the cumulated chromatic
and modal dispersion, and laser linewidth; the relative phase
among different modes was randomly chosen, as expected from
linear RMC. We suppose that each mode carries a Gaussian
pulse with initial complex amplitude Ap�0, t� and 3D field:
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Ei�x, y, z � 0, t� � Ai�0, t�F i�x, y�

�
ffiffiffiffiffi
Pi

p
exp�iϕi� exp

�
−
�t − t0�2
2T 2

0

�
F i�x, y�,

(2)

where F i�x, y� is the mode eigenfunction, Pi is the input peak
power, T FWHM � 1.665T 0 is the input pulse width, and ϕi is
an input random phase, modeling the effect of linear RMC
during propagation. In order to simulate the CW beam propa-
gation regime, the Gaussian pulse was replaced by a laser noise
term exp�i R t

−∞ ω0�t 0�dt 0�, where the laser linewidth noise ω0�t�
has a zero mean and standard deviation σω � 2πB, with B the
laser linewidth.

Pulse envelopes Ai�z, t� were numerically propagated ac-
cording to the different modal and chromatic dispersion,
and with constant linear loss [27]. The resulting output
spatiotemporal field can be written as E tot�x, y, z, t� �PN

i�1 ciEi�x, y, z, t�. By integrating jE totj2 versus time, one
may obtain the output near field. By integrating it ver-
sus �x, y�, the instantaneous power profile can also be
reconstructed.

3. EXPERIMENTAL RESULTS

In our experiments, we used relatively long (up to 5 km) spans
of commercial GRIN OM4 fiber, with 50∕125 μm core/
cladding diameter, cladding index nclad � 1.444 at 1550 nm,
and relative index difference Δ � 0.0103. The chromatic
dispersion was β2 � −28.8 ps2∕km for the fundamental mode
at 1550 nm, with a dispersion slope β3 � 0.153 ps3∕km. The
corresponding self-imaging (SI) period is Λ � πa∕

ffiffiffiffiffiffi
2Δ

p
�

0.55 mm, where a is the core radius. Fibers were spooled on
a support with 8 cm radius of curvature; care was taken to avoid
stronger bending. According to Gloge theory [28], bending
losses remain negligible up to the first 10 mode groups
(α ≃ 8 × 10−10 dB∕km for group 10, and α ≫ 30 dB∕km
for group 11).

Several coherent sources were alternatively used at the fiber
input: a 70 fs pulse source at 1550 nm wavelength, 100 kHz
repetition rate, obtained from an optical parametric amplifier
fed by a femtosecond Yb laser; a 1.4 ps unchirped pulse source,
obtained from the 70 fs pulses by narrow bandpass filtering; a
CW distributed feedback (DFB) laser with 1 nm linewidth at
1460 nm. The input beam was attenuated, linearly polarized,
and passed through a λ∕4 wave plate, in order to generate a
circular state of polarization. The Gaussian shaped beam was
then injected into GRIN fiber spans of variable lengths (from
1 m up to 5 km), with a waist w0 of approximately 15 μm,
nearly twice the fundamental mode waist. The corresponding
SI-induced beam compression factor C � 2Λ∕�πβ0w2

0� �
0.262, where β0 � 2πn0∕λ and n0 is the core index
[29,30]; the effective beam waist for determining the nonlinear
coefficient is we �

ffiffiffiffi
C

p
w0 � 7.7 μm [30,31], close to the fun-

damental mode waist. The circular state of polarization was
used at the input, in order to minimize power exchanges among
polarization modes. Input and output states-of-polarization
were checked by measuring the power after a rotating linear
polarizer, both after the input wave plate and after 5 km of

GRIN fiber; the power was constant at any angle of the polar-
izer, with a tolerance of 5%. In some tests, a diffuser was in-
troduced at the input, in order to increase the input high-order
mode content. Alternatively, the input of the fiber was laterally
shifted with respect to the beam by up to �15 μm, again to
increase the contribution from higher-order modes.

At the fiber output, a microlens focused the near field on an
InGaAs camera (Hamamatsu C12741-03); a second lens fo-
cused the beam into a real-time multiple octave spectrum
analyzer (Fastlite Mozza) with a spectral detection range of
1100–5000 nm. The output pulse temporal shape was in-
spected by a fast photodiode (Alphalas UPD-35-IR2-D) and
a real-time oscilloscope (Teledyne Lecroy WavePro 804HD)
with 30 ps overall response time. An intensity autocorrelator
(APE pulseCheck 50) with femtosecond resolution was also
used for the characterization of the input pulses. An M 2 tester
(Gentec Beamage M2) was used to characterize the output
beam quality. Input and output powers were measured by a
power meter with microwatt resolution.

Figure 1 shows the results of a first test, performed with un-
chirped 1.4 ps pulses at 1550 nm, propagating over 5 km of
GRIN fiber. No diffuser was used at the input, and the beam
lateral shift was limited to 4 μm. In this case, fiber chromatic
dispersion broadens the pulse up to 285 ps, whereas modal
dispersion separates the mode groups by up to 9 ns. The total
pulse energy in the fiber was 100 pJ, which corresponds to
P0 � 67 W of input pulse peak power. By considering the
power decrease due to dispersive pulse spreading and the weak
uniform linear loss, the effective nonlinear interaction length is
Le � 144 m; the corresponding phase shift induced by the self-
phase modulation is ΦNL � γP0Le � 5.51 rad, where γ �
2πn2∕�λAeff � � 0.57 �Wkm�−1 andAeff � πw2

e . Here we used
the nonlinear coefficient of silica n2 � 2.7 × 10−20 m2=W. This
means that the experiment was performed with significant non-
linearity at the fiber input (LNL ≃ Le); nonlinear effects can be

Fig. 1. Experiments with 1 m and 5 km of GRIN MMF, 1.4 ps
pulses at 1550 nm, 100 pJ pulse energy, lateral shift of 4 μm.
(a) Measured near field at 1 m. (b) Measured near field at 5 km.
(c) Instantaneous power at 5 km (measured and reconstructed).
(d) Reconstructed near field at 5 km.
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neglected after the effective distance Le � 144 m, and up to the
fiber length of 5 km.

The measured near field after 1 m of fiber, shown in Fig. 1(a),
is characterized by a highly speckled intensity pattern, denoting
the presence of a large number of modes. On the other hand,
after 5 km of propagation [Fig. 1(b)], a much brighter (nearly
bell-shaped) beam is observed. The output power measured after
5 km is illustrated in Fig. 1(c), blue curve, showing a train of
temporally broadened pulses, corresponding to the propagated
mode groups (up to 10 among them are visible).

A mode decomposition (MD) for the mode powers was ob-
tained by directly measuring the total degenerate mode group
power from the photodiode response, and dividing it by the
number of modes in that group; in this way one readily
obtains the mean power fraction of individual modes in a de-
generate group jcij2, as shown in Fig. 2(a) (black circles)
against the differential propagation constant of the mode
−Δβi � β1 − βi (mm−1).

Figure 1(d) shows the near field after 5 km of pulse propa-
gation, reconstructed by using the 3D method, based on the
measured jcij2 values from Fig. 1(c), and setting random input
mode phases 0 < ϕi < 2π: the image cross correlation [32] be-
tween Figs. 1(b) and 1(d) is 96%. The effect of input random
phases results in a smoothing of the output near field; the im-
ages cross correlation and the near-field shape are modestly af-
fected by a change of the input random mode phase sequence.
Figure 1(c) (orange curve) is the 3D reconstruction of the
output optical power, showing a good agreement with the
experiment.

In a second test, unchirped 70 fs pulses at 1550 nm were
propagated over 830 m of GRIN fiber; no diffuser was used at
the input, and the beam lateral shift was extended up to 15 μm
with respect to the fiber axis. In this case the input pulse energy
was limited to 100 pJ, giving a peak power of 1.3 kW. Because
of the strong dispersive spreading, the effective nonlinear inter-
action length is only Le � 0.64 m, and the overall nonlinear
phase shift ΦNL � γP0Le � 0.49 rad; hence, LNL > Le , and

the propagation regime of this test can be considered as
quasi-linear, or pseudo-linear [25].

Figure 3(a) shows the measured near field after 6 m of fiber,
which reflects the highly multimodal distribution that is in-
jected at the fiber input. After 830 m of propagation, the mea-
sured near field of Fig. 3(b) shows a homogeneous, bell-shaped
output beam. The experimental instantaneous power after
830 m in Fig. 3(c), blue curve, shows a 1100 ps pulse with
a trailing tail. Here chromatic dispersion is responsible for
pulse broadening up to 947 ps, whereas modal dispersion in-
troduces a 0.19 ps/m delay among adjacent mode groups.
Experimentally, the overall dispersion introduces a total pulse
broadening of up to 1100 ps. As a result, the different pulses
belonging to nondegenerate mode groups remain strongly over-
lapped in time at the fiber output. Yet, it is still possible to
recover the mode power distribution by sampling the measured
instantaneous power at the appropriate modal delays for each
mode group. After dividing these values by the number of
modes in each group, one obtains the mode power distribution
of Fig. 2(b) (black circles). Again, the measured mode power
distribution permits, in combination with the 3D simulation
method and by setting random mode phases, the
reconstruction of the transverse near-field intensity profile after
830 m of GRIN fiber, as shown in Fig. 3(d). The correspond-
ing simulated temporal power profile is reported as an orange
curve in Fig. 3(c). The good reconstruction in both spatial and
temporal dimensions confirms the correct sampling of the
mode group powers in Fig. 3(c).

Figures 2(a) and 2(b) show that the modal mean power frac-
tions can be properly fitted by exponential curves. Recall that
experiments in Fig. 2(a) were conducted in a propagation re-
gime which was initially dominated by nonlinearity, followed
by a much longer propagation distance where linear disorder
completely prevails; whereas experiments in Fig. 2(b) were only

Fig. 2. (a) Mean power fractions for test with 1.4 ps, 5 km, 100 pJ,
shift 4 μm. (b) Test with 70 fs, 830 m, 100 pJ, shift 15 μm. (c) T and
μ for the test of case (a) versus pulse energy. (d) T and μ for the test of
case (b) versus lateral shift.

Fig. 3. Experiment with 6 and 830 m of GRIN MMF, 70 fs pulses
at 1550 nm, 100 pJ pulse energy, and lateral input beam offset of
15 μm. (a) Measured near field at 6 m. (b) Measured near field at
830 m. (c) Instantaneous power at 830 m (measured and recon-
structed). (d) Reconstructed near field at 830 m.
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weakly affected by nonlinearity even initially. In Figs. 2(a) and
2(b) we compare experimental results against different theoreti-
cal distributions, specifically, the RJ law, the exponential MB
law, and the BE law of Eq. (1). In both cases, the BE distri-
bution better approximates the experimental data up to the
ninth mode group; whereas the RJ law is not suitable for de-
scribing the output mode distribution, since it fails to fit the
data after the fifth mode group. The MB exponential distribu-
tion also fits well the data. By considering the BE law as the
appropriate distribution, we computed the modal temperature
T and chemical potential μ (mm−1) for the first experiment
(1.4 ps pulse, 5 km) when pulse energy is increased from
100 to 400 pJ; see Fig. 2(c). As can be seen, T and μ remain
nearly constant when increasing the nonlinearity, as it is ex-
pected from theory [14].

For the second experiment (70 fs over 830 m in the pseudo-
linear regime), Fig. 2(b) illustrates the mean power fractions
when the input beam is coupled with nominal 15 μm lateral
shift with respect to the fiber axis: as can be seen, also in this
case the BE law fits very well the data. Figure 2(d) shows that,
when varying the input lateral shift from 0 to 15 μm, T and μ
remain nearly unchanged up to the limit value of 15 μm; this
indicates that the equilibrium output mode distribution is
nearly independent of the input coupling conditions.

Finally, we underline that, at variance with the approxima-
tion of mode degeneration, in our experiments we found that
the values of Δβi are slightly different between the modes
within the same group. This difference was accounted for when
using Eq. (1) for fitting the experimental data in Fig. 2.

In order to test a case where beam propagation occurs in the
strictly linear regime, we used a CW laser source at 1460 nm.
Figure 4 shows examples of measured near-field intensity pro-
files after 1 m, 830 m, and 5 km of GRIN fiber, respectively. At
the input, a beam diffuser was added; moreover, the beam
center was nominally laterally offset by 15 μm with respect
to the fiber axis. The CW input power was of only 1 μW, cor-
responding to LNL � 3 × 106 km. Meaning that in this case
propagation occurs in the purely linear regime: RMC is the
only source of disorder. As can be seen, the near field of
Fig. 4(a) at 1 m is highly multimodal; for increasing distances,
linear disorder leads to a progressive beam smoothing, produc-
ing the output of Fig. 4(c) after 5 km. Because of the operation
in the CW regime, it was not possible to temporally resolve the
mode groups in this case, in order to estimate the output mode

power distribution. Still, the generation of bright beam with a
near-field intensity profile similar to the case of Fig. 3(b) was
observed even in this case.

Previous experiments involved either highly dispersive
pulses, of the CW propagation regime. In the former cases, the
influence of the temporal dimension on the final output power
distribution can be simply taken into account by considering an
effective nonlinear length. This is no longer the case when the
input pulse powers increased up to the point of forming multi-
mode GRIN solitons [31,33,34]. To explore the soliton regime
and the resulting output mode power distribution, input 70 fs
pulses with energies ranging from 0.2 to 1.5 nJ were propagated
over 5 km of GRIN fiber. The input beam was coupled with
10 μm lateral shift with respect to the fiber axis. At 1.3 nJ of
input pulse energy, the pulse starts forming a multimode soliton
[34]. We observed that, for input pulse powers slightly below
the soliton value, the output beam was spatially compressed,
while its temporal duration broadened to a few hundreds of
femtoseconds. Yet, a Raman-shifted walk-off soliton did not
emerge; we will refer to this state as the quasi-soliton regime.
As soon as the walk-off soliton energy was reached (around
1.5 nJ at 1550 nm, not shown), nearly all of the output pulse
energy emerged in the fundamental fiber mode.

Figure 5 compares the dispersive pulse regime with the
quasi-soliton pulse regime. In the latter, Fig. 5(e), there is
no Raman-induced pulse delay, and a soliton has not yet sep-
arated from its residual dispersive waves; hence, a time-resolved
modal decomposition is still possible. Figures 5(a)–5(c) show
the measured near field, the output power (with sampled mode
group powers), and the mean mode power fractions, respec-
tively, in the dispersive pulse propagation regime. An output
beam waist of 13.5 μm and a beam quality factor M 2 �
1.75 were measured. In this case, the average mode power frac-
tions, that we have extracted from the photodiode trace, are
again properly fitted by a BE law. However, when propagating
in the multimode quasi-soliton regime, Figs. 5(d)–5(f )
show the emergence of a condensed beam, with a waist of
9.4 μm and a nearly diffraction-limited beam quality factor
M 2 � 1.05. This shows that most of the soliton beam power
is carried by the fundamental mode. Therefore, it is reasonable
to sample the first modal group in correspondence with the
pulse peak in the photodiode trace. Now, Fig. 5(f ) reveals that
the corresponding mode power distribution no longer follows a
BE law, but rather an RJ distribution. Although, the MD

Fig. 4. Experiments with 1 m, 830 m, and 5 km of GRIN fiber, with input CW beam at 1460 nm, 1 μW power, an input beam diffuser, and a
lateral shift of 15 μm.
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experiments show that higher-order modes are slightly more
depleted than the prediction based on the RJ law. We may thus
conjecture that the transition from the dispersive to the soliton
pulse regime is akin to a phase transition, which separates quali-
tatively different thermalization regimes.

4. DISCUSSION AND CONCLUSIONS

In this work, a time-resolved MD technique was used, in order
to analyze the output mode power distributions after long spans
of GRIN fibers. We considered four different propagation re-
gimes, i.e., purely linear, pseudo-linear, dispersive nonlinear,
and soliton regimes. Our 3D MD and reconstruction method
accounts for phase chirping, modal delay, and random complex
mode scrambling, induced by propagation on the complex am-
plitude of the spatiotemporal field. The accuracy of the method
was confirmed by successfully reconstructing the output field,
both in the spatial and in the temporal domains. Comparisons
among the experimental MD based on fast photodiode traces,
the 3D modal reconstructions, and fitting of the output modal
content, have shown that the BE law is the most appropriate for
describing long-distance multimode fiber propagation for both
dispersive nonlinear and quasi-linear regimes, in the presence of
random mode coupling. Similar results in terms of near-field
transverse intensity profiles were obtained in a purely linear
propagation regime, although no direct confirmation of the
output mode power distribution was possible in this case.

It was also observed that the multimode soliton regime is
characterized by a different mode power distribution, which
approaches the RJ law. The BE distribution, observed in a re-
gime where linear disorder prevails over a weak nonlinearity,
reveals the presence of a high-temperature thermalization pro-
cess, where the input power is diffused out of the fundamental
mode into higher-order modes. To the contrary, spatiotemporal
beam condensation is approached in the soliton regime, and the
output mode power distribution approaches the RJ law in this

case, in agreement with former studies of Kerr-driven spatial
beam self-cleaning. The difference in the two observed distri-
butions could be related to a glassy regime [35], caused by the
nonlinearity affected by the linear disorder; this property will be
investigated in a future work.

We underline that the exponential decay of the mode power
fraction must not be confused with the classical Maxwell–
Boltzmann law. Indeed, in the latter, the gas particles are sup-
posed to be distinguishable. Whereas our experiments involve
indistinguishable photons in the fiber modes, whose thermal-
ization process occurs before the mode distinguishability pro-
vided by the modal walk-off.
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